Interpretable scRNA-seq Trajectory DE with scLANE

Author
Affiliation

Jack R. Leary

University of Florida

Published

April 16, 2024

1 Introduction

In this tutorial we’ll walk through a basic trajectory differential expression analysis. We’ll use the scLANE R package, which we developed with the goal of providing accurate and biologically interpretable models of expression over pseudotime. At the end are some best-practices recommendations, along with a short list of references we used in developing the method & writing the accompanying manuscript. If you want to skip the preprocessing steps and get right into the analysis, head to Section 5.

2 Libraries

If you haven’t already, install the development version (currently v0.7.9) of scLANE from the GitHub repository.

Code
remotes::install_github("jr-leary7/scLANE")

Next, we’ll load the packages we need to process, analyze, & visualize our data.

Code
library(dplyr)           # data manipulation
library(scLANE)          # trajectory DE 
library(Seurat)          # scRNA-seq tools
library(ggplot2)         # plot creation 
library(patchwork)       # plot combination
library(slingshot)       # pseudotime estimation
library(reticulate)      # Python interface
library(ComplexHeatmap)  # heatmaps
rename <- dplyr::rename

3 Helper functions

We’ll also define a utility function to make our plots cleaner to read & easier to make.

Code
guide_umap <- function(key.size = 4) {
  ggplot2::guides(color = ggplot2::guide_legend(override.aes = list(size = key.size,
                                                                    alpha = 1, 
                                                                    stroke = 0.25)))
}

And consistent color palettes will make our plots easier to understand.

Code
palette_cluster <- paletteer::paletteer_d("ggsci::default_jama")
palette_celltype <- paletteer::paletteer_d("ggsci::category20_d3")
palette_heatmap <- paletteer::paletteer_d("wesanderson::Zissou1")

4 Data

We’ll load the well-known pancreatic endocrinogenesis data from Bastidas-Ponce et al (2019), which comes with the scVelo Python library & has been used in several pseudotime inference / RNA velocity method papers as a good benchmark dataset due to the simplicity of the underlying trajectory manifold.

Code
import scvelo as scv
adata = scv.datasets.pancreas()

The AnnData object contains data that we’ll need to extract, specifically the spliced & unspliced mRNA counts matrices (stored in AnnData.layers) and the cell-level metadata (which is in AnnData.obs).

Code
adata
AnnData object with n_obs × n_vars = 3696 × 27998
    obs: 'clusters_coarse', 'clusters', 'S_score', 'G2M_score'
    var: 'highly_variable_genes'
    uns: 'clusters_coarse_colors', 'clusters_colors', 'day_colors', 'neighbors', 'pca'
    obsm: 'X_pca', 'X_umap'
    layers: 'spliced', 'unspliced'
    obsp: 'distances', 'connectivities'

4.1 Conversion from Python

The reticulate package allows us to pass the counts matrices & metadata from Python back to R.

Code
spliced_counts = adata.layers['spliced'].toarray()
unspliced_counts = adata.layers['unspliced'].toarray()
Note

While downloading this dataset requires a Python installation as well as the installation of the scVelo Python library (and its dependencies), running scLANE is done purely in R & requires no Python whatsoever.

We’ll use the spliced mRNA counts as our default assay, and also define a new assay containing the total (spliced + unspliced) mRNA in each cell. Lastly, we remove genes with non-zero spliced mRNA in 3 or fewer cells.

Code
spliced_counts <- Matrix::Matrix(t(py$spliced_counts), sparse = TRUE)
unspliced_counts <- Matrix::Matrix(t(py$unspliced_counts), sparse = TRUE)
rna_counts <- spliced_counts + unspliced_counts
colnames(rna_counts) <- colnames(spliced_counts) <- colnames(unspliced_counts) <- py$adata$obs_names$to_list()
rownames(rna_counts) <- rownames(spliced_counts) <- rownames(unspliced_counts) <- py$adata$var_names$to_list()
spliced_assay <- CreateAssayObject(counts = spliced_counts)
spliced_assay@key <- "spliced_"
unspliced_assay <- CreateAssayObject(counts = unspliced_counts)
unspliced_assay@key <- "unspliced_"
rna_assay <- CreateAssayObject(counts = rna_counts)
rna_assay@key <- "rna_"
meta_data <- py$adata$obs %>% 
             mutate(cell_name = rownames(.), 
                    .before = 1) %>% 
             rename(celltype = clusters, 
                    celltype_coarse = clusters_coarse) %>% 
             mutate(nCount_spliced = colSums(spliced_counts), 
                    nFeature_spliced = colSums(spliced_counts > 0), 
                    nCount_unspliced = colSums(unspliced_counts), 
                    nFeature_unspliced = colSums(unspliced_counts > 0), 
                    nCount_RNA = colSums(rna_counts), 
                    nFeature_RNA = colSums(rna_counts > 0))
seu <- CreateSeuratObject(counts = spliced_assay, 
                          assay = "spliced", 
                          project = "Mm_Panc_Endo", 
                          meta.data = meta_data)
seu@assays$unspliced <- unspliced_assay
seu@assays$RNA <- rna_assay
seu <- seu[rowSums(seu@assays$spliced) > 3, ]

4.2 Preprocessing

We preprocess the counts using a typical pipeline with QC, normalization & scaling, dimension reduction, and graph-based clustering via the Leiden algorithm.

Code
seu <- PercentageFeatureSet(seu, 
                            pattern = "^mt-", 
                            col.name = "percent_mito", 
                            assay = "spliced") %>% 
       PercentageFeatureSet(pattern = "^Rp[sl]", 
                            col.name = "percent_ribo", 
                            assay = "spliced") %>% 
       NormalizeData(assay = "spliced", verbose = FALSE) %>% 
       NormalizeData(assay = "unspliced", verbose = FALSE) %>% 
       NormalizeData(assay = "RNA", verbose = FALSE) %>% 
       FindVariableFeatures(assay = "spliced", 
                            nfeatures = 3000, 
                            verbose = FALSE) %>% 
       ScaleData(assay = "spliced", 
                 vars.to.regress = c("percent_mito", "percent_ribo"), 
                 model.use = "poisson", 
                 verbose = FALSE) %>% 
       RunPCA(assay = "spliced", 
              npcs = 30, 
              approx = TRUE, 
              seed.use = 312, 
              verbose = FALSE) %>% 
       RunUMAP(reduction = "pca", 
               dims = 1:30, 
               n.components = 2, 
               metric = "cosine", 
               seed.use = 312, 
               verbose = FALSE) %>% 
       FindNeighbors(reduction = "pca", 
                     k.param = 30,
                     nn.method = "annoy", 
                     annoy.metric = "cosine", 
                     verbose = FALSE) %>% 
       FindClusters(algorithm = 4, 
                    method = "igraph", 
                    resolution = 0.5, 
                    random.seed = 312, 
                    verbose = FALSE)

Let’s visualize the results on our UMAP embedding. The clustering generally agrees with the celltype labels, though there is some overclustering in the ductal cells & underclustering in the mature endocrine celltypes.

Code
p0 <- Embeddings(seu, "umap") %>% 
      as.data.frame() %>% 
      magrittr::set_colnames(c("UMAP_1", "UMAP_2")) %>% 
      mutate(leiden = seu$seurat_clusters) %>% 
      ggplot(aes(x = UMAP_1, y = UMAP_2, color = leiden)) + 
      geom_point(size = 1.5, 
                 alpha = 0.75, 
                 stroke = 0) + 
      scale_color_manual(values = palette_cluster) + 
      labs(x = "UMAP 1", 
           y = "UMAP 2", 
           color = "Leiden") + 
      theme_scLANE(umap = TRUE) + 
      guide_umap()
p1 <- Embeddings(seu, "umap") %>% 
      as.data.frame() %>% 
      magrittr::set_colnames(c("UMAP_1", "UMAP_2")) %>% 
      mutate(celltype = seu$celltype) %>% 
      ggplot(aes(x = UMAP_1, y = UMAP_2, color = celltype)) + 
      geom_point(size = 1.5, 
                 alpha = 0.75, 
                 stroke = 0) + 
      scale_color_manual(values = palette_celltype) + 
      labs(x = "UMAP 1", 
           y = "UMAP 2", 
           color = "Celltype") + 
      theme_scLANE(umap = TRUE) + 
      guide_umap()
p2 <- (p0 / p1) +
      plot_layout(guides = "collect", axes = "collect")
p2
Figure 1: Cluster & celltype labels in UMAP space.

5 Trajectory inference

5.1 Pseudotime estimation

We’ll start by fitting a trajectory using the slingshot R package. We define cluster 5 as the starting cluster, since in this case we’re already aware of the dataset’s underlying biology. After generating the estimates for each cell, we rescale the ordering to be defined on \([0, 1]\). This has no effect on the trajectory DE results however, and is mostly an aesthetic choice.

Code
sling_res <- slingshot(Embeddings(seu, "umap"),
                       start.clus = "5",
                       clusterLabels = seu$seurat_clusters, 
                       approx_points = 500)
sling_pt <- slingPseudotime(sling_res) %>% 
            as.data.frame() %>% 
            magrittr::set_colnames(c("PT")) %>% 
            mutate(PT = (PT - min(PT)) / (max(PT) - min(PT)))
seu <- AddMetaData(seu, 
                   metadata = sling_pt, 
                   col.name = "sling_pt")

Let’s visualize the results on our UMAP embedding. They match what we would expect (knowing the biological background of the data), with ductal cells at the start of the process and endocrine celltypes such as alpha, beta, & delta cells at the end of it.

Code
p3 <- Embeddings(seu, "umap") %>% 
      as.data.frame() %>% 
      magrittr::set_colnames(c("UMAP_1", "UMAP_2")) %>% 
      mutate(PT = sling_pt$PT) %>% 
      ggplot(aes(x = UMAP_1, y = UMAP_2, color = PT)) + 
      geom_point(size = 1.5, 
                 alpha = 0.75, 
                 stroke = 0) + 
      labs(x = "UMAP 1", 
           y = "UMAP 2", 
           color = "Pseudotime") + 
      scale_color_gradientn(colors = palette_heatmap, 
                            labels = scales::label_number(accuracy = 0.01)) + 
      theme_scLANE(umap = TRUE)
p4 <- (p3 / p1) + 
      plot_layout(guides = "collect", axes = "collect")
p4
Figure 2: Estimated pseudotime in UMAP space.

5.2 Trajectory DE testing

Next, we prepare the primary inputs to scLANE: our Seurat object with the spliced counts set as the default assay, a dataframe containing our estimated pseudotime ordering, a vector of size factors to use as an offset for sequencing depth in each model, and a set of genes whose dynamics we want to model. scLANE parallelizes over genes in order to speed up the computation at the expense of using a little more memory. The models are fit using NB GLMs with optimal spline knots identified empirically, and differential expression is quantified using a likelihood ratio test of the fitted model vs. a constant (intercept-only) model. In practice, genes designated as HVGs are usually the best candidates for modeling, so we choose the top 3,000 HVGs as our input.

Note

The testing of the HVG set on its own is also justified by the reality that almost all trajectories are inferred using some sort of dimension-reduced space, and those embeddings are nearly universally generated using a set of HVGs. As such, genes not included in the HVG set actually have no direct relationship with the estimated trajectory, & it’s generally safe to exclude them from trajectory analyses.

Code
top3k_hvg <- HVFInfo(seu) %>% 
             arrange(desc(variance.standardized)) %>% 
             slice_head(n = 3000) %>% 
             rownames(.)
cell_offset <- createCellOffset(seu)
scLANE_models <- testDynamic(seu, 
                             pt = sling_pt, 
                             genes = top3k_hvg, 
                             size.factor.offset = cell_offset, 
                             n.cores = 6L, 
                             verbose = FALSE)
Registered S3 method overwritten by 'bit':
  method   from  
  print.ri gamlss
scLANE testing completed for 3000 genes across 1 lineage in 22.681 mins
Code
scLANE_res_tidy <- getResultsDE(scLANE_models)

After tidying the TDE results with getResultsDE(), we pull a sample of 6 genes from the results & display their test statistics. By default, any gene with an adjusted p-value less than 0.01 is predicted to be dynamic, though this threshold can be easily adjusted.

Code
select(scLANE_res_tidy, 
       Gene, 
       Test_Stat, 
       P_Val, 
       P_Val_Adj,
       Gene_Dynamic_Overall) %>% 
  mutate(Gene_Dynamic_Overall = if_else(Gene_Dynamic_Overall == 1, "Dynamic", "Static")) %>% 
  with_groups(Gene_Dynamic_Overall, 
              slice_sample, 
              n = 3) %>% 
  kableExtra::kbl(digits = 4, 
                  booktabs = TRUE, 
                  col.names = c("Gene", "LRT stat.", "P-value", "Adj. p-value", "Predicted gene status")) %>% 
  kableExtra::kable_classic(full_width = FALSE, "hover")
Gene LRT stat. P-value Adj. p-value Predicted gene status
Prc1 1002.5987 0.0000 0.0000 Dynamic
Ddx3y 34.2841 0.0000 0.0000 Dynamic
Ceacam10 31.5036 0.0000 0.0001 Dynamic
Lims2 2.4696 0.1161 1.0000 Static
Gm9801 NA NA NA Static
Jakmip3 15.8731 0.0004 0.1152 Static
Table 1: TDE test results from scLANE.

Next, we can use the plotModels() function to visualize the fitted models from scLANE and compare them to other modeling methods. The gene Neurog3 is strongly associated with epithelial cell differentiation, and indeed we see a clear, nonlinear transcriptional dynamic across pseudotime for that gene. A traditional GLM fails to capture that nonlinearity, and while a GAM fits the trend smoothly, it seems to overfit the dynamics near the boundaries of pseudotime - a known issue with additive models. Only the scLANE model accurately models the rapid upregulation and equally swift downregulation of the transcription factor neurogenin-3 (Neurog3) over pseudotime, in addition to identifying the cutpoint in pseudotime at which downregulation begins.

Code
p5 <- plotModels(scLANE_models, 
                 gene = "Neurog3", 
                 pt = sling_pt, 
                 expr.mat = seu, 
                 size.factor.offset = cell_offset, 
                 plot.glm = TRUE, 
                 plot.gam = TRUE) + 
      scale_color_manual(values = c("forestgreen"))
p5
Figure 3: Modeling framework comparison.

6 Downstream analysis

6.1 Gene dynamics plots

Using the getFittedValues() function allows us to generate predictions from the models we fit, which we then use to visualize the dynamics of a few genes that are known to be strongly associated with the differentiation of immature progenitors into mature endocrine phenotypes (source 1, source 2). For all four genes, the fitted models show knots chosen in the area of pseudotime around the pre-endocrine cells. This tells us that these driver genes are being upregulated in precursor celltypes & are driving differentiation into the mature celltypes such as alpha & beta cells, after which the genes are downregulated.

Code
p6 <- getFittedValues(scLANE_models, 
                      genes = c("Chga", "Chgb", "Fev", "Cck"), 
                      pt = sling_pt, 
                      expr.mat = seu, 
                      size.factor.offset = cell_offset, 
                      cell.meta.data = select(seu@meta.data, celltype, celltype_coarse)) %>% 
      ggplot(aes(x = pt, y = rna_log1p)) + 
      facet_wrap(~gene, 
                 ncol = 2, 
                 scales = "free_y") + 
      geom_point(aes(color = celltype), 
                 size = 2, 
                 alpha = 0.75, 
                 stroke = 0) + 
      geom_vline(data = data.frame(gene = "Chga", knot = unique(scLANE_models$Chga$Lineage_A$MARGE_Slope_Data$Breakpoint)), 
                 mapping = aes(xintercept = knot), 
                 linetype = "dashed", 
                 color = "grey20") + 
      geom_vline(data = data.frame(gene = "Chgb", knot = unique(scLANE_models$Chgb$Lineage_A$MARGE_Slope_Data$Breakpoint)), 
                 mapping = aes(xintercept = knot), 
                 linetype = "dashed", 
                 color = "grey20") + 
      geom_vline(data = data.frame(gene = "Cck", knot = unique(scLANE_models$Cck$Lineage_A$MARGE_Slope_Data$Breakpoint)), 
                 mapping = aes(xintercept = knot), 
                 linetype = "dashed", 
                 color = "grey20") + 
      geom_vline(data = data.frame(gene = "Fev", knot = unique(scLANE_models$Fev$Lineage_A$MARGE_Slope_Data$Breakpoint)), 
                 mapping = aes(xintercept = knot), 
                 linetype = "dashed", 
                 color = "grey20") + 
      geom_ribbon(aes(ymin = scLANE_ci_ll_log1p, ymax = scLANE_ci_ul_log1p), 
                  linewidth = 0, 
                  fill = "grey70", 
                  alpha = 0.9) + 
      geom_line(aes(y = scLANE_pred_log1p), 
                color = "black", 
                linewidth = 0.75) + 
      scale_x_continuous(labels = scales::label_number(accuracy = 0.01)) + 
      scale_color_manual(values = palette_celltype) + 
      labs(x = "Pseudotime", 
           y = "Normalized Expression") + 
      theme_scLANE() + 
      theme(legend.title = element_blank(), 
            strip.text.x = element_text(face = "italic")) + 
      guide_umap()
p6
Figure 4: scLANE models of endocrinogenesis drivers.

On the other hand, if we use additive models the “peak” of expression is placed among the mature endocrine celltypes - which doesn’t make biological sense if we know that these genes are driving that process of differentiation. This can of course be tweaked by changing the degree or degrees of freedom of the underlying basis spline, but choosing a “best” value for those hyperparameters can be difficult, whereas scLANE identifies optimal parameters internally by default. In addition, the knots chosen by scLANE for each gene can be informative with respect to the underlying biology, whereas the knots from GAMs are evenly spaced at quantiles & carry no biological interpretation.

Code
p7 <- getFittedValues(scLANE_models, 
                      genes = c("Chga", "Chgb", "Fev", "Cck"), 
                      pt = sling_pt, 
                      expr.mat = seu, 
                      size.factor.offset = cell_offset, 
                      cell.meta.data = select(seu@meta.data, celltype, celltype_coarse)) %>% 
      mutate(rna_raw = rna / size_factor, .before = 7) %>% 
      with_groups(gene, 
                  mutate, 
                  GAM_fitted_link = predict(nbGAM(expr = rna_raw, 
                                                  pt = sling_pt, 
                                                  Y.offset = cell_offset, 
                                                  spline.df = 3)), 
                  GAM_se_link = predict(nbGAM(expr = rna_raw, 
                                              pt = sling_pt, 
                                              Y.offset = cell_offset, 
                                              spline.df = 3), se.fit = TRUE)[[2]]) %>% 
      mutate(GAM_pred = exp(GAM_fitted_link) * cell_offset, 
             GAM_ci_ll = exp(GAM_fitted_link - qnorm(0.975) * GAM_se_link) * cell_offset, 
             GAM_ci_ul = exp(GAM_fitted_link + qnorm(0.975) * GAM_se_link) * cell_offset, 
             GAM_pred_log1p = log1p(GAM_pred), 
             GAM_ci_ll_log1p = log1p(GAM_ci_ll), 
             GAM_ci_ul_log1p = log1p(GAM_ci_ul)) %>% 
      ggplot(aes(x = pt, y = rna_log1p)) + 
      facet_wrap(~gene, 
                 ncol = 2, 
                 scales = "free_y") + 
      geom_point(aes(color = celltype), 
                 size = 2, 
                 alpha = 0.75, 
                 stroke = 0) + 
      geom_ribbon(aes(ymin = GAM_ci_ll_log1p, ymax = GAM_ci_ul_log1p), 
                  linewidth = 0, 
                  fill = "grey70", 
                  alpha = 0.9) + 
      geom_line(aes(y = GAM_pred_log1p), 
                color = "black", 
                linewidth = 0.75) + 
      scale_x_continuous(labels = scales::label_number(accuracy = 0.01)) + 
      scale_color_manual(values = palette_celltype) + 
      labs(x = "Pseudotime", 
           y = "Normalized Expression") + 
      theme_scLANE() + 
      theme(legend.title = element_blank(), 
            strip.text.x = element_text(face = "italic")) + 
      guide_umap()
p7
Figure 5: Additive models of endocrinogenesis drivers.

6.2 Distribution of knot locations

Let’s take a broader view of the dataset by examining the distribution of adaptively chosen knots from our models. We limit the analysis to the set of 2452 genes determined to be dynamic.

Code
dyn_genes <- filter(scLANE_res_tidy, Gene_Dynamic_Overall == 1) %>% 
             pull(Gene)
knot_df <- getKnotDist(scLANE_models, dyn_genes)

We’ll plot a histogram of the knot values along with a ridgeplot of the pseudotime distribution for each celltype. We see that a large number of the selected knots are placed at the beginning of the trajectory, around where the ductal cells transition into endocrine progenitors. A smaller set of knots is placed about halfway through the trajectory, which we’ve annotated as the point at which pre-endocrine cells begin differentiating into mature endocrine phenotypes.

Code
p8 <- ggplot(knot_df, aes(x = knot)) + 
      geom_histogram(aes(y = after_stat(density)), 
                     color = "black", 
                     fill = "white", 
                     linewidth = 0.5) + 
      geom_density(fill = "deepskyblue3", 
                   alpha = 0.5, 
                   color = "deepskyblue4", 
                   linewidth = 1) + 
      scale_x_continuous(limits = c(0, 1), labels = scales::label_number(accuracy = 0.01)) + 
      labs(x = "Pseudotime") + 
      theme_scLANE() + 
      theme(axis.ticks.y = element_blank(), 
            axis.title.y = element_blank(), 
            axis.text.y = element_blank())
p9 <- data.frame(celltype = seu$celltype, 
                 pt = seu$sling_pt) %>% 
      ggplot(aes(x = pt, y = celltype, fill = celltype, color = celltype)) + 
      ggridges::geom_density_ridges(alpha = 0.75, size = 1, scale = 0.95) + 
      scale_x_continuous(labels = scales::label_number(accuracy = 0.01), limits = c(0, 1)) + 
      scale_fill_manual(values = palette_celltype) + 
      scale_color_manual(values = palette_celltype) + 
      labs(x = "Pseudotime") + 
      theme_scLANE() + 
      theme(axis.title.y = element_blank(), 
            legend.title = element_blank()) + 
      guide_umap()
p10 <- (p8 / p9) + 
       plot_layout(heights = c(1/4, 3/4), axes = "collect")
p10
Figure 6: Distribution of adaptively-chosen knots from scLANE.

6.3 Dynamic gene clustering

We can extract a matrix of fitted dynamics using smoothedCountsMatrix(). Next, the embedGenes() function reduces dimensionality with PCA, clusters the genes using the Leiden algorithm, & embeds the genes in two dimensions with UMAP.

Code
smoothed_counts <- smoothedCountsMatrix(scLANE_models, 
                                        pt = sling_pt, 
                                        genes = dyn_genes, 
                                        size.factor.offset = cell_offset)
gene_embed <- embedGenes(log1p(smoothed_counts$Lineage_A), resolution.param = 0.2)

First we’ll visualize the gene clusters on the first two PCs.

Code
p11 <- ggplot(gene_embed, aes(x = pc1, y = pc2, color = leiden)) + 
       geom_point(size = 2, 
                  alpha = 0.75, 
                  stroke = 0) + 
       labs(x = "PC 1", 
            y = "PC 2", 
            color = "Leiden Cluster") +
       paletteer::scale_color_paletteer_d("ggsci::default_igv") + 
       theme_scLANE(umap = TRUE) + 
       guide_umap()
p11
Figure 7: Unsupervised clustering of genes in PCA space.

The UMAP embedding shows that even with the relatively small number of genes, clear patterns are visible.

Code
p12 <- ggplot(gene_embed, aes(x = umap1, y = umap2, color = leiden)) + 
       geom_point(size = 2, 
                  alpha = 0.75, 
                  stroke = 0) + 
       labs(x = "UMAP 1", 
            y = "UMAP 2", 
            color = "Gene Cluster") +
       paletteer::scale_color_paletteer_d("ggsci::default_igv") + 
       theme_scLANE(umap = TRUE) + 
       guide_umap()
p12
Figure 8: Unsupervised clustering of genes in UMAP space.

6.4 Expression cascades

We can also plot a heatmap of the dynamic genes; this requires a bit of setup, for which we’ll use the ComplexHeatmap package. We scale each gene, and clip values to be on \([-6, 6]\). The columns (cells) of the heatmap are ordered by estimated pseudotime, and the rows (genes) are ordered by expression peak.

Code
col_anno_df <- select(seu@meta.data, 
                      cell_name, 
                      celltype, 
                      sling_pt) %>% 
               mutate(celltype = as.factor(celltype)) %>% 
               arrange(sling_pt)
gene_order <- sortGenesHeatmap(smoothed_counts$Lineage_A, pt.vec = sling_pt$PT)
heatmap_mat <- t(scale(smoothed_counts$Lineage_A))
heatmap_mat[heatmap_mat > 6] <- 6
heatmap_mat[heatmap_mat < -6] <- -6
colnames(heatmap_mat) <- seu$cell_name
heatmap_mat <- heatmap_mat[, col_anno_df$cell_name]
heatmap_mat <- heatmap_mat[gene_order, ]
palette_celltype_hm <- as.character(palette_celltype[1:length(unique(seu$celltype))])
names(palette_celltype_hm) <- levels(col_anno_df$celltype)
col_anno <- HeatmapAnnotation(Celltype = col_anno_df$celltype, 
                              Pseudotime = col_anno_df$sling_pt, 
                              col = list(Celltype = palette_celltype_hm, 
                                         Pseudotime = circlize::colorRamp2(seq(0, 1, by = 0.25), palette_heatmap)),
                              show_legend = TRUE, 
                              show_annotation_name = FALSE, 
                              gap = unit(1, "mm"), 
                              border = TRUE)
palette_cluster_hm <- as.character(paletteer::paletteer_d("ggsci::default_igv")[1:length(unique(gene_embed$leiden))])
names(palette_cluster_hm) <- as.character(unique(gene_embed$leiden))
row_anno <- HeatmapAnnotation(Cluster = as.factor(gene_embed$leiden), 
                              col = list(Cluster = palette_cluster_hm), 
                              show_legend = TRUE, 
                              show_annotation_name = FALSE, 
                              annotation_legend_param = list(title = "Gene\nCluster"), 
                              gap = unit(1, "mm"), 
                              border = TRUE, 
                              which = "row")

The heatmap shows clear dynamic patterns across pseudotime; these patterns are often referred to as expression cascades, and represent periodic up- and down-regulation of different gene programs during the course of the underlying biological process.

Code
Heatmap(matrix = heatmap_mat, 
        name = "Spliced\nmRNA", 
        col = circlize::colorRamp2(colors = viridis::inferno(50), 
                                   breaks = seq(min(heatmap_mat), max(heatmap_mat), length.out = 50)), 
        cluster_columns = FALSE,
        width = 12, 
        height = 6, 
        column_title = "",
        cluster_rows = FALSE,
        top_annotation = col_anno, 
        left_annotation = row_anno, 
        show_column_names = FALSE, 
        show_row_names = FALSE, 
        use_raster = TRUE,
        raster_by_magick = TRUE, 
        raster_quality = 5)
Figure 9: Expression cascades of dynamic genes.

6.5 Gene programs

Using our gene clusters & the gprofiler2 package, we run an enrichment analysis against the biological process (BP) set of gene ontologies. We make sure to order the genes in each cluster by their test statistics by joining to the results table from scLANE.

Code
gene_clust_list <- purrr::map(unique(gene_embed$leiden), \(x) { 
  filter(gene_embed, leiden == x) %>% 
  inner_join(scLANE_res_tidy, by = c("gene" = "Gene")) %>% 
  arrange(desc(Test_Stat)) %>% 
  pull(gene)
}) 
names(gene_clust_list) <- paste0("Leiden_", unique(gene_embed$leiden))
enrich_res <- gprofiler2::gost(gene_clust_list, 
                               organism = "mmusculus", 
                               ordered_query = TRUE, 
                               multi_query = FALSE, 
                               sources = "GO:BP", 
                               significant = TRUE)

A look at the top 5 most-significant GO terms for each gene cluster reveals heterogeneous functionalities across groups of genes.

Code
mutate(enrich_res$result, 
       query = gsub("Leiden_", "", query)) %>% 
  rename(cluster = query) %>% 
  with_groups(cluster, 
              slice_head,
              n = 5) %>% 
  select(cluster, 
         term_name, 
         p_value, 
         term_size, 
         query_size, 
         intersection_size, 
         term_id) %>% 
  kableExtra::kbl(digits = 3, 
                  booktabs = TRUE, 
                  col.names = c("Gene Cluster", "Term Name", "Adj. P-value", "Term Size", 
                                "Query Size", "Intersection Size", "Term ID")) %>% 
  kableExtra::kable_classic(c("hover"), full_width = FALSE)
Gene Cluster Term Name Adj. P-value Term Size Query Size Intersection Size Term ID
0 tube development 0 1181 335 66 GO:0035295
0 anatomical structure development 0 6269 326 157 GO:0048856
0 multicellular organism development 0 4879 329 136 GO:0007275
0 developmental process 0 6854 326 164 GO:0032502
0 tube morphogenesis 0 927 335 55 GO:0035239
1 signal release 0 587 178 34 GO:0023061
1 export from cell 0 982 316 55 GO:0140352
1 secretion by cell 0 913 289 50 GO:0032940
1 peptide hormone secretion 0 316 214 28 GO:0030072
1 hormone transport 0 405 316 36 GO:0009914
2 nitrogen compound transport 0 1959 160 46 GO:0071705
2 regulation of secretion by cell 0 667 156 27 GO:1903530
2 regulation of hormone levels 0 639 156 26 GO:0010817
2 secretion by cell 0 913 156 30 GO:0032940
2 regulation of transport 0 1749 274 56 GO:0051049
3 organonitrogen compound metabolic process 0 5744 523 220 GO:1901564
3 system development 0 4117 522 173 GO:0048731
3 positive regulation of biological process 0 6589 528 234 GO:0048518
3 positive regulation of cellular process 0 6078 528 218 GO:0048522
3 multicellular organism development 0 4879 523 187 GO:0007275
4 cell cycle 0 1808 303 173 GO:0007049
4 cell cycle process 0 1256 285 149 GO:0022402
4 mitotic cell cycle 0 852 323 125 GO:0000278
4 mitotic cell cycle process 0 718 285 112 GO:1903047
4 chromosome segregation 0 408 263 86 GO:0007059
5 multicellular organism development 0 4879 314 126 GO:0007275
5 system development 0 4117 314 112 GO:0048731
5 anatomical structure development 0 6269 307 141 GO:0048856
5 developmental process 0 6854 341 160 GO:0032502
5 animal organ development 0 3260 341 99 GO:0048513
Table 2: The top-5 biological process GO terms per cluster.

We can use the geneProgramScoring() function to add module scores for each gene cluster to our Seurat object.

Code
peptide_program <- filter(enrich_res$result, term_name == "peptide hormone secretion") %>% 
                   arrange(p_value) %>% 
                   slice_head(n = 1) %>% 
                   pull(query)
peptide_program_name <- gsub("Leiden_", "cluster_", peptide_program)
seu <- geneProgramScoring(seu, 
                          genes = gene_embed$gene, 
                          gene.clusters = gene_embed$leiden)

Visualizing the scores on our UMAP embedding shows us that the peptide program is highly-enriched only in mature endocrine cells. This makes sense biologically as mature endocrine celltypes’ primary roles are to produce peptides such as glucagon (alpha cells), insulin (beta cells), somatostatin (ductal cells), and pancreatic polypeptide (gamma cells).

Code
p13 <- Embeddings(seu, "umap") %>% 
       as.data.frame() %>% 
       magrittr::set_colnames(c("UMAP_1", "UMAP_2")) %>% 
       mutate(peptide_program_score = seu@meta.data[, peptide_program_name]) %>% 
       ggplot(aes(x = UMAP_1, y = UMAP_2, color = peptide_program_score)) + 
       geom_point(size = 1.5, alpha = 0.75, stroke = 0) + 
       labs(x = "UMAP 1", 
            y = "UMAP 2", 
            color = "Program Score") + 
       scale_color_gradientn(colors = palette_heatmap, 
                             labels = scales::label_number(accuracy = 0.1)) + 
       theme_scLANE(umap = TRUE) 
p14 <- (p13 / p1) + 
       plot_layout(guides = "collect", axes = "collect")
p14
Figure 10: Enrichment of peptide production gene program.

We can also visualize the trend in the peptide program scores over time, which confirms the biological conclusions we came to by inspecting the UMAP.

Code
p15 <- data.frame(PT = sling_pt$PT, 
                  peptide_program_score = seu@meta.data[, peptide_program_name], 
                  celltype = seu$celltype) %>% 
       ggplot(aes(x = PT, y = peptide_program_score, color = celltype)) + 
       geom_point(alpha = 0.75, 
                  stroke = 0, 
                  size = 2) + 
       geom_smooth(color = "black", 
                   method = "loess", 
                   linewidth = 0.75) + 
       scale_color_manual(values = palette_celltype) + 
       labs(x = "Pseudotime", y = "Peptide Program Score") + 
       theme_scLANE() + 
       theme(legend.title = element_blank()) + 
       guide_umap()
p15
Figure 11: Peptide production gene program scores over pseudotime.

Next, in order to identify which genes are “drivers” of a certain gene program, we can use the geneProgramDrivers() function to correlate normalized expression with program scores.

Code
program_drivers <- geneProgramDrivers(seu, 
                                      genes = gene_embed$gene, 
                                      gene.program = seu@meta.data[, peptide_program_name], 
                                      verbose = FALSE)

We display the top 10 most-correlated genes here. For example, carboxypeptidase E (Cpe) is involved in the production of insulin (source).

Code
slice_head(program_drivers, n = 10) %>% 
  kableExtra::kbl(digits = 3, 
                  booktabs = TRUE, 
                  row.names = FALSE,
                  col.names = c("Gene", "Correlation", "P-value", "Adj. P-value")) %>% 
  kableExtra::kable_classic(c("hover"), full_width = FALSE)
Gene Correlation P-value Adj. P-value
Cpe 0.849 0 0
Gnas 0.824 0 0
Fam183b 0.824 0 0
Pcsk1n 0.810 0 0
Sparc -0.774 0 0
Aplp1 0.767 0 0
Hmgn3 0.757 0 0
Isl1 0.757 0 0
1700086L19Rik 0.755 0 0
Spp1 -0.752 0 0
Table 3: The top-10 driver genes for the peptide production gene program.

Indeed, normalized expression of Cpe is high across all mature endocrine celltypes, with alpha and beta cells showing the highest overall mean expression.

Code
p16 <- data.frame(celltype = seu$celltype, 
                  rna = seu@assays$spliced@data["Cpe", ]) %>% 
       ggplot(aes(x = celltype, y = rna, color = celltype)) + 
       ggbeeswarm::geom_quasirandom(alpha = 0.75, 
                                    size = 2, 
                                    stroke = 0, 
                                    show.legend = FALSE) +
       scale_color_manual(values = palette_celltype) + 
       stat_summary(fun = "mean", 
                    geom = "point", 
                    color = "black",
                    size = 3) + 
       labs(y = "Normalized Expression") + 
       theme_scLANE() + 
       theme(axis.title.x = element_blank())
p16
Figure 12: Beeswarm plots of driver gene expression by celltype.

6.6 Dynamic gene enrichment

Lastly, we perform an enrichment analysis for our set of dynamic genes. We’ll focus on terms from the GO biological process (BP) set, as those are generally the easiest to interpret.

Code
dyn_gene_enrich <- enrichDynamicGenes(scLANE_res_tidy, species = "Mmusculus")
dyn_go_bp_terms <- filter(dyn_gene_enrich$result, 
                          source == "GO:BP", 
                          p_value < 0.05)

Overall, there are 1341 unique significantly-enriched GO:BP terms for our trajectory.

Code
select(dyn_go_bp_terms, term_name, p_value, source) %>% 
  slice_sample(n = 10) %>% 
  kableExtra::kbl(digits = 3, 
                  booktabs = TRUE, 
                  row.names = FALSE,
                  col.names = c("Term", "P-value", "Source")) %>% 
  kableExtra::kable_classic(c("hover"), full_width = FALSE)
Term P-value Source
multi-organism reproductive process 0.000 GO:BP
response to electrical stimulus 0.006 GO:BP
regulation of nuclear division 0.000 GO:BP
meiotic nuclear division 0.000 GO:BP
response to transforming growth factor beta 0.000 GO:BP
regulation of fibroblast proliferation 0.000 GO:BP
cellular response to carbohydrate stimulus 0.000 GO:BP
double-strand break repair via homologous recombination 0.018 GO:BP
carbohydrate homeostasis 0.000 GO:BP
positive regulation of calcium ion transport 0.046 GO:BP
Table 4: Random sample of the biological processes enriched for the dynamic gene set.

7 Conclusions

Hopefully this vignette has been a useful introduction to running the scLANE software and using its outputs to help better understand biology at single-cell resolution. If you have questions about how the models work or are interpreted, software issues, or simply want to compare results feel free to open an issue on the GitHub repository or reach out via email to .

8 References

  1. Bastidas-Ponce, Aimée et al. Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development (2019).

  2. Street, Kelly et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics (2018).

  3. Stoklosa, Jakub & David Warton. A generalized estimating equation approach to multivariate adaptive regression splines. Journal of Computational and Graphical Statistics (2018).

9 Session Info

Code
sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.3.2 (2023-10-31)
 os       macOS Sonoma 14.3.1
 system   x86_64, darwin20
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       America/New_York
 date     2024-04-16
 pandoc   3.1.12.3 @ /usr/local/bin/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package              * version    date (UTC) lib source
 abind                  1.4-5      2016-07-21 [1] CRAN (R 4.3.0)
 backports              1.4.1      2021-12-13 [1] CRAN (R 4.3.0)
 beeswarm               0.4.0      2021-06-01 [1] CRAN (R 4.3.0)
 bigassertr             0.1.6      2023-01-10 [1] CRAN (R 4.3.0)
 bigparallelr           0.3.2      2021-10-02 [1] CRAN (R 4.3.0)
 bigstatsr              1.5.12     2022-10-14 [1] CRAN (R 4.3.0)
 Biobase              * 2.62.0     2023-10-24 [1] Bioconductor
 BiocGenerics         * 0.48.1     2023-11-01 [1] Bioconductor
 BiocNeighbors          1.20.1     2023-12-18 [1] Bioconductor 3.18 (R 4.3.2)
 BiocParallel           1.36.0     2023-10-24 [1] Bioconductor
 bit                    4.0.5      2022-11-15 [1] CRAN (R 4.3.0)
 bitops                 1.0-7      2021-04-24 [1] CRAN (R 4.3.0)
 bluster                1.12.0     2023-10-24 [1] Bioconductor
 boot                   1.3-28.1   2022-11-22 [1] CRAN (R 4.3.2)
 broom                  1.0.5      2023-06-09 [1] CRAN (R 4.3.0)
 broom.mixed            0.2.9.4    2022-04-17 [1] CRAN (R 4.3.0)
 circlize               0.4.15     2022-05-10 [1] CRAN (R 4.3.0)
 cli                    3.6.2      2023-12-11 [1] CRAN (R 4.3.0)
 clue                   0.3-65     2023-09-23 [1] CRAN (R 4.3.0)
 cluster                2.1.6      2023-12-01 [1] CRAN (R 4.3.0)
 coda                   0.19-4     2020-09-30 [1] CRAN (R 4.3.0)
 codetools              0.2-19     2023-02-01 [1] CRAN (R 4.3.2)
 colorspace             2.1-0      2023-01-23 [1] CRAN (R 4.3.0)
 ComplexHeatmap       * 2.18.0     2023-10-24 [1] Bioconductor
 cowplot                1.1.2      2023-12-15 [1] CRAN (R 4.3.0)
 crayon                 1.5.2      2022-09-29 [1] CRAN (R 4.3.0)
 data.table             1.14.10    2023-12-08 [1] CRAN (R 4.3.0)
 DelayedArray           0.28.0     2023-10-24 [1] Bioconductor
 DelayedMatrixStats     1.24.0     2023-10-24 [1] Bioconductor
 deldir                 2.0-2      2023-11-23 [1] CRAN (R 4.3.0)
 digest                 0.6.33     2023-07-07 [1] CRAN (R 4.3.0)
 doParallel             1.0.17     2022-02-07 [1] CRAN (R 4.3.0)
 doSNOW                 1.0.20     2022-02-04 [1] CRAN (R 4.3.0)
 dotCall64              1.1-1      2023-11-28 [1] CRAN (R 4.3.0)
 dplyr                * 1.1.4      2023-11-17 [1] CRAN (R 4.3.0)
 ellipsis               0.3.2      2021-04-29 [1] CRAN (R 4.3.0)
 emmeans                1.10.0     2024-01-23 [1] CRAN (R 4.3.2)
 estimability           1.4.1      2022-08-05 [1] CRAN (R 4.3.0)
 evaluate               0.23       2023-11-01 [1] CRAN (R 4.3.0)
 fansi                  1.0.6      2023-12-08 [1] CRAN (R 4.3.0)
 farver                 2.1.1      2022-07-06 [1] CRAN (R 4.3.0)
 fastDummies            1.7.3      2023-07-06 [1] CRAN (R 4.3.0)
 fastmap                1.1.1      2023-02-24 [1] CRAN (R 4.3.0)
 ff                     4.0.9      2023-01-25 [1] CRAN (R 4.3.0)
 fitdistrplus           1.1-11     2023-04-25 [1] CRAN (R 4.3.0)
 flock                  0.7        2016-11-12 [1] CRAN (R 4.3.0)
 forcats                1.0.0      2023-01-29 [1] CRAN (R 4.3.0)
 foreach                1.5.2      2022-02-02 [1] CRAN (R 4.3.0)
 furrr                  0.3.1      2022-08-15 [1] CRAN (R 4.3.0)
 future                 1.33.1     2023-12-22 [1] CRAN (R 4.3.0)
 future.apply           1.11.1     2023-12-21 [1] CRAN (R 4.3.0)
 gamlss                 5.4-20     2023-10-04 [1] CRAN (R 4.3.0)
 gamlss.data            6.0-2      2021-11-07 [1] CRAN (R 4.3.0)
 gamlss.dist            6.1-1      2023-08-23 [1] CRAN (R 4.3.0)
 geeM                   0.10.1     2018-06-18 [1] CRAN (R 4.3.0)
 generics               0.1.3      2022-07-05 [1] CRAN (R 4.3.0)
 GenomeInfoDb         * 1.38.5     2023-12-28 [1] Bioconductor 3.18 (R 4.3.2)
 GenomeInfoDbData       1.2.11     2023-12-22 [1] Bioconductor
 GenomicRanges        * 1.54.1     2023-10-29 [1] Bioconductor
 GetoptLong             1.0.5      2020-12-15 [1] CRAN (R 4.3.0)
 ggbeeswarm             0.7.2      2023-04-29 [1] CRAN (R 4.3.0)
 ggh4x                  0.2.8      2024-01-23 [1] CRAN (R 4.3.2)
 ggplot2              * 3.4.4      2023-10-12 [1] CRAN (R 4.3.0)
 ggrepel                0.9.5      2024-01-10 [1] CRAN (R 4.3.0)
 ggridges               0.5.5      2023-12-15 [1] CRAN (R 4.3.0)
 glm2                 * 1.2.1      2018-08-11 [1] CRAN (R 4.3.0)
 glmmTMB                1.1.8      2023-10-07 [1] CRAN (R 4.3.0)
 GlobalOptions          0.1.2      2020-06-10 [1] CRAN (R 4.3.0)
 globals                0.16.2     2022-11-21 [1] CRAN (R 4.3.0)
 glue                   1.6.2      2022-02-24 [1] CRAN (R 4.3.0)
 goftest                1.2-3      2021-10-07 [1] CRAN (R 4.3.0)
 gprofiler2             0.2.2      2023-06-14 [1] CRAN (R 4.3.0)
 gridExtra              2.3        2017-09-09 [1] CRAN (R 4.3.0)
 gtable                 0.3.4      2023-08-21 [1] CRAN (R 4.3.0)
 highr                  0.10       2022-12-22 [1] CRAN (R 4.3.0)
 htmltools              0.5.7      2023-11-03 [1] CRAN (R 4.3.0)
 htmlwidgets            1.6.4      2023-12-06 [1] CRAN (R 4.3.0)
 httpuv                 1.6.13     2023-12-06 [1] CRAN (R 4.3.0)
 httr                   1.4.7      2023-08-15 [1] CRAN (R 4.3.0)
 ica                    1.0-3      2022-07-08 [1] CRAN (R 4.3.0)
 igraph                 2.0.1.1    2024-01-30 [1] CRAN (R 4.3.2)
 IRanges              * 2.36.0     2023-10-24 [1] Bioconductor
 irlba                  2.3.5.1    2022-10-03 [1] CRAN (R 4.3.0)
 iterators              1.0.14     2022-02-05 [1] CRAN (R 4.3.0)
 jsonlite               1.8.8      2023-12-04 [1] CRAN (R 4.3.0)
 kableExtra             1.3.4      2021-02-20 [1] CRAN (R 4.3.0)
 KernSmooth             2.23-22    2023-07-10 [1] CRAN (R 4.3.2)
 knitr                  1.45       2023-10-30 [1] CRAN (R 4.3.0)
 labeling               0.4.3      2023-08-29 [1] CRAN (R 4.3.0)
 later                  1.3.2      2023-12-06 [1] CRAN (R 4.3.0)
 lattice                0.22-5     2023-10-24 [1] CRAN (R 4.3.0)
 lazyeval               0.2.2      2019-03-15 [1] CRAN (R 4.3.0)
 leiden                 0.4.3.1    2023-11-17 [1] CRAN (R 4.3.0)
 lifecycle              1.0.4      2023-11-07 [1] CRAN (R 4.3.0)
 listenv                0.9.0      2022-12-16 [1] CRAN (R 4.3.0)
 lme4                   1.1-35.1   2023-11-05 [1] CRAN (R 4.3.0)
 lmtest                 0.9-40     2022-03-21 [1] CRAN (R 4.3.0)
 magick                 2.8.2      2023-12-20 [1] CRAN (R 4.3.0)
 magrittr             * 2.0.3      2022-03-30 [1] CRAN (R 4.3.0)
 MASS                   7.3-60     2023-05-04 [1] CRAN (R 4.3.0)
 Matrix                 1.6-5      2024-01-11 [1] CRAN (R 4.3.0)
 MatrixGenerics       * 1.14.0     2023-10-24 [1] Bioconductor
 matrixStats          * 1.2.0      2023-12-11 [1] CRAN (R 4.3.0)
 mgcv                   1.9-1      2023-12-21 [1] CRAN (R 4.3.0)
 mime                   0.12       2021-09-28 [1] CRAN (R 4.3.0)
 miniUI                 0.1.1.1    2018-05-18 [1] CRAN (R 4.3.0)
 minqa                  1.2.6      2023-09-11 [1] CRAN (R 4.3.0)
 munsell                0.5.0      2018-06-12 [1] CRAN (R 4.3.0)
 mvtnorm                1.2-4      2023-11-27 [1] CRAN (R 4.3.0)
 nlme                   3.1-164    2023-11-27 [1] CRAN (R 4.3.0)
 nloptr                 2.0.3      2022-05-26 [1] CRAN (R 4.3.0)
 numDeriv               2016.8-1.1 2019-06-06 [1] CRAN (R 4.3.0)
 paletteer              1.6.0      2024-01-21 [1] CRAN (R 4.3.0)
 parallelly             1.36.0     2023-05-26 [1] CRAN (R 4.3.0)
 patchwork            * 1.2.0      2024-01-08 [1] CRAN (R 4.3.0)
 pbapply                1.7-2      2023-06-27 [1] CRAN (R 4.3.0)
 pillar                 1.9.0      2023-03-22 [1] CRAN (R 4.3.0)
 pkgconfig              2.0.3      2019-09-22 [1] CRAN (R 4.3.0)
 plotly                 4.10.4     2024-01-13 [1] CRAN (R 4.3.0)
 plyr                   1.8.9      2023-10-02 [1] CRAN (R 4.3.0)
 png                    0.1-8      2022-11-29 [1] CRAN (R 4.3.0)
 polyclip               1.10-6     2023-09-27 [1] CRAN (R 4.3.0)
 princurve            * 2.1.6      2021-01-18 [1] CRAN (R 4.3.0)
 prismatic              1.1.1      2022-08-15 [1] CRAN (R 4.3.0)
 progressr              0.14.0     2023-08-10 [1] CRAN (R 4.3.0)
 promises               1.2.1      2023-08-10 [1] CRAN (R 4.3.0)
 ps                     1.7.5      2023-04-18 [1] CRAN (R 4.3.0)
 purrr                  1.0.2      2023-08-10 [1] CRAN (R 4.3.0)
 R6                     2.5.1      2021-08-19 [1] CRAN (R 4.3.0)
 RANN                   2.6.1      2019-01-08 [1] CRAN (R 4.3.0)
 RColorBrewer           1.1-3      2022-04-03 [1] CRAN (R 4.3.0)
 Rcpp                   1.0.11     2023-07-06 [1] CRAN (R 4.3.0)
 RcppAnnoy              0.0.21     2023-07-02 [1] CRAN (R 4.3.0)
 RcppEigen              0.3.3.9.4  2023-11-02 [1] CRAN (R 4.3.0)
 RcppHNSW               0.5.0      2023-09-19 [1] CRAN (R 4.3.0)
 RCurl                  1.98-1.13  2023-11-02 [1] CRAN (R 4.3.0)
 rematch2               2.1.2      2020-05-01 [1] CRAN (R 4.3.0)
 reshape2               1.4.4      2020-04-09 [1] CRAN (R 4.3.0)
 reticulate           * 1.34.0     2023-10-12 [1] CRAN (R 4.3.0)
 rjson                  0.2.21     2022-01-09 [1] CRAN (R 4.3.0)
 rlang                  1.1.2      2023-11-04 [1] CRAN (R 4.3.0)
 rmarkdown              2.25       2023-09-18 [1] CRAN (R 4.3.0)
 rmio                   0.4.0      2022-02-17 [1] CRAN (R 4.3.0)
 ROCR                   1.0-11     2020-05-02 [1] CRAN (R 4.3.0)
 RSpectra               0.16-1     2022-04-24 [1] CRAN (R 4.3.0)
 rstudioapi             0.15.0     2023-07-07 [1] CRAN (R 4.3.0)
 Rtsne                  0.17       2023-12-07 [1] CRAN (R 4.3.0)
 rvest                  1.0.3      2022-08-19 [1] CRAN (R 4.3.0)
 S4Arrays               1.2.0      2023-10-24 [1] Bioconductor
 S4Vectors            * 0.40.2     2023-11-23 [1] Bioconductor
 scales                 1.3.0      2023-11-28 [1] CRAN (R 4.3.0)
 scattermore            1.2        2023-06-12 [1] CRAN (R 4.3.0)
 scLANE               * 0.7.9      2024-04-13 [1] Bioconductor
 sctransform            0.4.1      2023-10-19 [1] CRAN (R 4.3.0)
 sessioninfo            1.2.2      2021-12-06 [1] CRAN (R 4.3.0)
 Seurat               * 5.0.1      2023-11-17 [1] CRAN (R 4.3.0)
 SeuratObject         * 5.0.1      2023-11-17 [1] CRAN (R 4.3.0)
 shape                  1.4.6      2021-05-19 [1] CRAN (R 4.3.0)
 shiny                  1.8.0      2023-11-17 [1] CRAN (R 4.3.0)
 SingleCellExperiment * 1.24.0     2023-10-24 [1] Bioconductor
 slingshot            * 2.10.0     2023-10-24 [1] Bioconductor
 snow                   0.4-4      2021-10-27 [1] CRAN (R 4.3.0)
 sp                   * 2.1-2      2023-11-26 [1] CRAN (R 4.3.0)
 spam                   2.10-0     2023-10-23 [1] CRAN (R 4.3.0)
 SparseArray            1.2.3      2023-12-25 [1] Bioconductor 3.18 (R 4.3.2)
 sparseMatrixStats      1.14.0     2023-10-24 [1] Bioconductor
 spatstat.data          3.0-3      2023-10-24 [1] CRAN (R 4.3.0)
 spatstat.explore       3.2-5      2023-10-22 [1] CRAN (R 4.3.0)
 spatstat.geom          3.2-7      2023-10-20 [1] CRAN (R 4.3.0)
 spatstat.random        3.2-2      2023-11-29 [1] CRAN (R 4.3.0)
 spatstat.sparse        3.0-3      2023-10-24 [1] CRAN (R 4.3.0)
 spatstat.utils         3.0-4      2023-10-24 [1] CRAN (R 4.3.0)
 stringi                1.8.3      2023-12-11 [1] CRAN (R 4.3.0)
 stringr                1.5.1      2023-11-14 [1] CRAN (R 4.3.0)
 SummarizedExperiment * 1.32.0     2023-10-24 [1] Bioconductor
 survival               3.5-7      2023-08-14 [1] CRAN (R 4.3.2)
 svglite                2.1.3      2023-12-08 [1] CRAN (R 4.3.0)
 systemfonts            1.0.5      2023-10-09 [1] CRAN (R 4.3.0)
 tensor                 1.5        2012-05-05 [1] CRAN (R 4.3.0)
 tibble                 3.2.1      2023-03-20 [1] CRAN (R 4.3.0)
 tidyr                  1.3.1      2024-01-24 [1] CRAN (R 4.3.2)
 tidyselect             1.2.0      2022-10-10 [1] CRAN (R 4.3.0)
 TMB                    1.9.11     2024-04-03 [1] CRAN (R 4.3.2)
 TrajectoryUtils      * 1.10.0     2023-10-24 [1] Bioconductor
 UCell                  2.6.2      2023-11-06 [1] Bioconductor
 utf8                   1.2.4      2023-10-22 [1] CRAN (R 4.3.0)
 uwot                   0.1.16     2023-06-29 [1] CRAN (R 4.3.0)
 vctrs                  0.6.5      2023-12-01 [1] CRAN (R 4.3.0)
 vipor                  0.4.7      2023-12-18 [1] CRAN (R 4.3.0)
 viridis                0.6.4      2023-07-22 [1] CRAN (R 4.3.0)
 viridisLite            0.4.2      2023-05-02 [1] CRAN (R 4.3.0)
 webshot                0.5.5      2023-06-26 [1] CRAN (R 4.3.0)
 withr                  2.5.2      2023-10-30 [1] CRAN (R 4.3.0)
 xfun                   0.41       2023-11-01 [1] CRAN (R 4.3.0)
 xml2                   1.3.6      2023-12-04 [1] CRAN (R 4.3.0)
 xtable                 1.8-4      2019-04-21 [1] CRAN (R 4.3.0)
 XVector                0.42.0     2023-10-24 [1] Bioconductor
 yaml                   2.3.8      2023-12-11 [1] CRAN (R 4.3.0)
 zlibbioc               1.48.0     2023-10-24 [1] Bioconductor
 zoo                    1.8-12     2023-04-13 [1] CRAN (R 4.3.0)

 [1] /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library

─ Python configuration ───────────────────────────────────────────────────────
 python:         /Users/jack/Desktop/PhD/Research/Python_Envs/personal_site/bin/python
 libpython:      /usr/local/opt/python@3.11/Frameworks/Python.framework/Versions/3.11/lib/python3.11/config-3.11-darwin/libpython3.11.dylib
 pythonhome:     /Users/jack/Desktop/PhD/Research/Python_Envs/personal_site:/Users/jack/Desktop/PhD/Research/Python_Envs/personal_site
 version:        3.11.6 (main, Nov  2 2023, 04:52:24) [Clang 14.0.3 (clang-1403.0.22.14.1)]
 numpy:          /Users/jack/Desktop/PhD/Research/Python_Envs/personal_site/lib/python3.11/site-packages/numpy
 numpy_version:  1.26.3
 
 NOTE: Python version was forced by use_python() function

──────────────────────────────────────────────────────────────────────────────